Chapitre 4 – Représentation d'état Partie 2

1. RELATION AVEC LA FONCTION DE TRANSFERT

Continu:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$sX(s) = AX(s) + BU(s)$$

$$[sI - A]X(s) = BU(s)$$

$$X(s) = [sI - A]^{-1}BU(s)$$

$$y(t) = Cx(t) + Du(t)$$

$$Y(s) = CX(s) + DU(s)$$

$$Y(s) = C[sI - A]^{-1}BU(s) + DU(s)$$

$$\boxed{\frac{Y(s)}{U(s)} = G(s) = C[sI - A]^{-1}B + D}$$

Stabilité \rightarrow pôle de G(s), i.e. les valeurs de s pour que $G(s) \rightarrow \infty$.

$$G(s) = C \frac{\operatorname{adj}[sI - A]}{\det[sI - A]} B + D$$

Les pôles de G(s) sont donc les valeurs de s qui font que $\det \lceil sI - A \rceil = 0$.

Pôles de $G(s) \rightarrow$ valeurs propres de A.

• Discret:

$$x(k+1) = Ax(k) + Bu(k)$$

$$zX(z) = AX(z) + BU(z)$$

$$[zI - A]X(z) = BU(z)$$

$$X(z) = [zI - A]^{-1}BU(z)$$

$$y(k) = Cx(k) + Du(k)$$

$$Y(z) = CX(z) + DU(z)$$

$$Y(z) = C[zI - A]^{-1}BU(z) + DU(z)$$

$$\frac{Y(z)}{U(z)} = G(z) = C[zI - A]^{-1}B + D$$

Stabilité \rightarrow Même analyse qu'en continu. Pôles de $G(z) \rightarrow$ valeurs propres de A.

2. PROPRIÉTÉS DE LA REPRÉSENTATION D'ÉTAT

- Retards:
 - En continu: ne peuvent être représentés.
 - En discret : par des z^{-1}
- Nombre d'états :
 - Σ des ordres des sous-procédés + $\underbrace{\Sigma$ des retards (-1)

Pour systèmes discrets, mettre la FT en puissance de z (et pas en z^{-1})

$$G(z) = \frac{N(z)}{D(z)} = \frac{N_d(z)}{D_d(z)} z^{-d} = \frac{\left(b_0 + b_1 z + \dots + b_{n_a} z^{n_a}\right) z^{-d}}{a_0 - a_1 z - \dots - a_{n_a} z^{n_a}}$$

ightharpoonup Si $n_a = 0 \rightarrow d$ états

ightharpoonup Si $n_a>0$ et si $N\left(z\right)$ et $D\left(z\right)$ sont du même degré $ightharpoonup n_a+d$ états

ightharpoonup Si $n_a > 0$ et si N(z) et D(z) ne sont pas du même degré $\rightarrow n_a + d - 1$ états

- <u>Exemple</u>:

$$\frac{2z^{-3}}{1 - 0.8z^{-1}} = \frac{2}{z^3 - 0.8z^2} = \frac{2z}{z - 0.8}z^{-3} \implies \frac{n_a = 1}{d = 3} \implies 3 + 1 - 1 = 3 \text{ états}$$

- États :
 - En continu : sont les sorties d'un intégrateur 1/s .
 - En discret : sont les sorties d'un retard z^{-1} .
 - Un état ne peut pas bouger de façon discontinue (à moins d'impulsions pour les systèmes continus).
- Pour un système sans transmission directe, i.e. D = 0:
 - En continu : FT $G(s) \rightarrow$ ordre du dénominateur > ordre du numérateur
 - En discret : FT G(z=0)=0
- Les états caractérisent l'état du système :
 - Leurs valeurs à t=0 sont les conditions initiales nécessaires pour calculer l'évolution du système.
 - Se sont la mémoire minimale du système pour pouvoir le simuler.
- Pour un même système, il existe une infinité de représentations d'états .
 - Si possible, prendre la représentation dont les états ont une signification physique.
- Les valeurs propres de la matrice A sont les pôles du système.
- Mêmes équations d'état en monovariable qu'en multivariable.

SISO:
$$\frac{x(k+1)}{x(k+1)} = \underbrace{A}_{sc.} \underbrace{x(k)}_{sc.} + \underbrace{B}_{u(k)} \underbrace{u(k)}_{sc.} \Rightarrow \text{ même chose en continu}$$

$$\underbrace{y(k)}_{sc.} = \underbrace{C}_{sc.} \underbrace{x(k)}_{sc.} + \underbrace{D}_{sc.} \underbrace{u(k)}_{sc.} \Rightarrow \text{ même chose en continu}$$

- MIMO:
$$\frac{\overbrace{x(k+1)}^{\text{vecteur}} = \overbrace{A}^{\text{mx.}} \overbrace{x(k)}^{\text{ve.}} + \overbrace{B}^{\text{mx.}} \underbrace{u(k)}^{\text{ve.}}}{\underbrace{y(k)}_{\text{vc.}} = \underbrace{C}_{\text{mx.}} \underbrace{x(k)}_{\text{vc.}} + \underbrace{D}_{\text{mx.}} \underbrace{u(k)}_{\text{vc.}} + \underbrace{D}_{\text{vc.}} \underbrace{u(k)}_{\text{vc.}}}_{\text{vc.}} \Rightarrow \text{ même chose en continu}$$

3. MATRICE DE TRANSITION

• Comment calculer x(t) pour une entrée u(t) à partir de $\dot{x}(t) = Ax(t) + Bu(t)$ avec conditions initiales $x(t_0) = x_{t_0}$?

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 (1)

Multiplie Eq.(1) par e^{-At} :
$$e^{-At}\dot{x}(t) = e^{-At}\left(Ax(t) + Bu(t)\right)$$

$$e^{-At}\left(\dot{x}(t) - Ax(t)\right) = e^{-At}Bu(t)$$

$$\frac{d}{dt}\Big[e^{-At}x(t)\Big] = e^{-At}Bu(t)$$

Changement de variable $t \rightarrow \tau$

$$\frac{d}{d\tau} \left[e^{-A\tau} x(\tau) \right] = e^{-A\tau} Bu(\tau) \quad (2)$$

Intègre Eq.(2) de t_0 à t

$$\int_{t_0}^{t} \frac{d}{d\tau} \Big[e^{-A\tau} x(\tau) \Big] d\tau = \int_{t_0}^{t} e^{-A\tau} Bu(\tau) d\tau$$

$$e^{-A\tau} x(\tau) \Big|_{t_0}^{t} = \int_{t_0}^{t} e^{-A\tau} Bu(\tau) d\tau$$

$$e^{-At} x(t) - e^{-At_0} x(t_0) = \int_{t_0}^{t} e^{-A\tau} Bu(\tau) d\tau$$

$$x(t) = e^{A(t-t_0)} x(t_0) + \int_{t_0}^{t} e^{A(t-\tau)} Bu(\tau) d\tau$$

$$x(t) = \Phi(t-t_0) x(t_0) + \int_{t_0}^{t} \Phi(t-\tau) Bu(\tau) d\tau$$

où $\Phi(t) = e^{\mathbf{A}t}$ est la matrice de transition des états.

L'expression

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{\substack{\text{réponse naturelle} \\ \text{(rép. aux c. i. avec } u=0)}} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{\substack{\text{réponse forcée} \\ \text{solution homogène}}}$$

permet de calculer x(t) pour une entrée u(t).

• Comment calculer e^{At} ?

Pour
$$u(t) = 0$$
 et c. i. $x(t_0 = 0) = x(0)$,
$$\dot{x}(t) = Ax(t) \qquad \qquad \text{On sait que pour } u(t) = 0 \text{ et } x(0)$$

$$sIX(s) - X(0) = AX(s) \qquad \qquad x(t) = e^{At}x(0)$$

$$donc$$

$$x(t) = x(0) \mathcal{X}^{-1} [sI - A]^{-1} \qquad \qquad e^{At} = \mathcal{X}^{-1} [sI - A]^{-1}$$

• Exemple:

$$A = \begin{bmatrix} -0.5 & 0 \\ -0.5 & -1 \end{bmatrix}$$
$$sI - A = \begin{bmatrix} s + 0.5 & 0 \\ 0.5 & s + 1 \end{bmatrix}$$

$$[sI - A]^{-1} = \frac{1}{(s+0.5)(s+1)} \begin{bmatrix} s+1 & 0 \\ -0.5 & s+0.5 \end{bmatrix} = \begin{bmatrix} \frac{1}{s+0.5} & 0 \\ \frac{-0.5}{(s+0.5)(s+1)} & \frac{1}{s+1} \end{bmatrix} = \begin{bmatrix} \frac{1}{s+0.5} & 0 \\ \frac{-1}{s+0.5} & \frac{1}{s+1} \end{bmatrix}$$

$$\frac{1}{s+0.5} + \frac{1}{s+1} = \begin{bmatrix} \frac{1}{s+0.5} & \frac{1}{s+1} & \frac{1}{s+1} \end{bmatrix}$$

$$\mathcal{Z}^{-1}[sI - A]^{-1} = \begin{bmatrix} e^{-0.5t} & 0 \\ -e^{-0.5t} + e^{-t} & e^{-t} \end{bmatrix} = e^{At} = \Phi(t)$$

4. **DISCRÉTISATION**

continu période d'échant. T discret

$$A,B,C,D \Leftrightarrow A_d,B_d,C_d,D_d$$

$$|A,B,C,D| \Rightarrow |A,B,C_d,D_d|$$

$$|A,B,C,D,C_d,D_d|$$

$$|A,B,C,D,C_d,D_d|$$

$$|A,B,C,D,C_d,D_d|$$

$$|A,B,C_d,D_d,D_d|$$

$$|A,B,C_d$$

Discrétisation sur une période : temps initial $\rightarrow t_0 = kT$, temps final $\rightarrow t = (k+1)T$

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$x((k+1)T) = e^{A((k+1)T-kT)}x(kT) + \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)}Bu(\tau)d\tau$$

Changement de variable :

$$\alpha = (k+1)T - \tau \qquad \text{pour } \tau = kT \to \alpha = T$$

$$\tau = (k+1)T - \alpha \qquad \Rightarrow \qquad \text{pour } \tau = (k+1)T \to \alpha = 0$$

$$d\tau = -d\alpha \qquad \qquad u(\tau) = u(\alpha) = \text{cste} = u$$

$$x((k+1)T) = e^{AT}x(kT) + \int_{T}^{0} e^{A\alpha}Bu(\alpha)(-1)d\alpha$$

$$= e^{AT}x(kT) + \int_{0}^{T} e^{A\alpha}Bu(\alpha)d\alpha$$

$$x(k+1) = e^{AT}x(k) + \left[\int_{0}^{T} e^{A\alpha}Bd\alpha\right]u(k)$$

Donc,

$$x(k+1) = A_d x(k) + B_d u(k)$$

$$A_d = e^{AT} = \Phi(T)$$

$$B_d = \int_0^T e^{A\alpha} B d\alpha$$

$$y(k) = C_d x(k) + D_d u(k)$$

$$C_d = C$$

$$D_d = D$$

5. IMPLANTATION SUR ORDINATEUR

Simulation d'un système discret SISO:

```
A = ... % Matrice d'évolution du système
B = ... % Matrice de commande
C = ... % Matrice d'observation
D = ... % Matrice de transmission directe

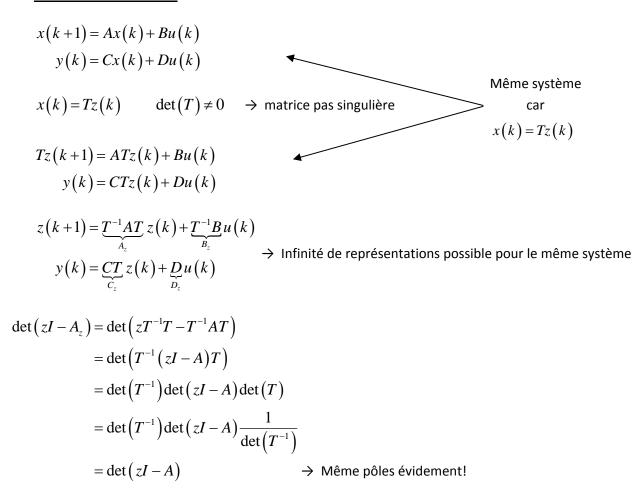
X = ... % Vecteur d'états initiaux
u = ... % L'entrée sur toute la simulation (vecteur de longeur i)

for i = 1:N,
    y(i) = C*x + D*u(i);
    x = A*x + B*u(i);
end
```

Passage de FT continue \rightarrow RE continue \rightarrow FT discrète:

Passage de FT continue → FT discrète → RE discrète:

6. CHANGEMENT DE BASE

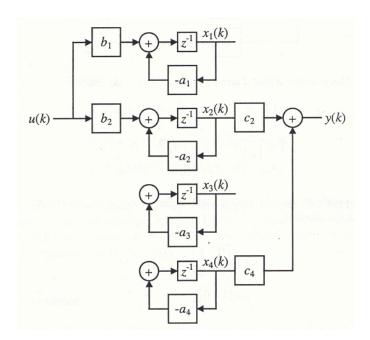


7. OBSERVABILITÉ ET GOUVERNABILITÉ (CONTRÔLABILITÉ)

- Définitions:
 - Gouvernabilité: Un système est dit gouvernable si, par application d'une une commande convenable, on peut amener en un temps fini tout état d'une valeur à une autre valeur.
 - Observabilité: Un système est dit observable si, de l'observation de la sortie et de la connaissance de l'entrée pendant un temps fini, on peut déduire les valeurs initiales de tous les états.

Exemple 4.8:

Soit le procédé monovariable



dont l'équation d'état est

$$\begin{bmatrix} x_{1}(k+1) \\ x_{2}(k+1) \\ x_{3}(k+1) \\ x_{4}(k+1) \end{bmatrix} = \begin{bmatrix} -a_{1} & 0 & 0 & 0 \\ 0 & -a_{2} & 0 & 0 \\ 0 & 0 & -a_{3} & 0 \\ 0 & 0 & 0 & -a_{4} \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \\ x_{4}(k) \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \\ 0 \\ 0 \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} 0 & c_{2} & 0 & c_{4} \end{bmatrix} \begin{bmatrix} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \\ x_{4}(k) \end{bmatrix}$$

On constate que:

- L'état x_1 est gouvernable, mais non observable
- L'état x_2 est gouvernable et observable
- L'état x_3 est ni gouvernable ni observable
- -L'état \mathcal{X}_4 est non gouvernable, mais observable

Observable?

$$y(n) = Cx(n)$$
, $n =$ nombre d'états

Peut-on déduire l'état initial x(1) à partir de y(i) et u(i) pour $i=1 \rightarrow n$?

$$y(1) = Cx(1)$$

$$y(2) = Cx(2)$$

$$= CAx(1) + CBu(1)$$

$$y(3) = CAx(2) + CBu(2)$$

$$= CA \left[Ax(1) + Bu(1) \right] + CBu(2)$$

$$= CA^{2}x(1) + CABu(1) + CBu(2)$$

$$\vdots$$

$$y(n) = CA^{n-1}x(1) + CA^{n-2}Bu(1) + CA^{n-3}Bu(2) + \dots + CABu(n-2) + CBu(n-1)$$

$$\begin{bmatrix} y(1) \\ y(2) \end{bmatrix} \begin{bmatrix} C \\ CA \end{bmatrix}$$

$$\begin{bmatrix} y(1) \\ y(2) \\ y(3) \\ \vdots \\ y(n) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{n-1} \end{bmatrix} x(1) + \underbrace{V}_{\text{vecteur connu}} \rightarrow x(1) = \begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{n-1} \end{bmatrix}^{-1} \left(\begin{bmatrix} y(1) \\ y(2) \\ y(3) \\ \vdots \\ y(n) \end{bmatrix} - V \right)$$

Le système est donc observable si
$$CA$$

$$CA^2$$

$$\vdots$$

$$CA^{n-1}$$
est de pleinrang (i.e. inversible).
$$CA^{n-1}$$

• Gouvernable?

Peut-on trouver les $u(0) \rightarrow u(n-1)$ pour que x(n) soit à une valeur désirée sachant qu'il est parti de x(0)?

$$x(1) = Ax(0) + Bu(0)$$

$$x(2) = Ax(1) + Bu(1)$$

$$= A^{2}x(0) + ABu(0) + Bu(1)$$

$$x(3) = A^{2}x(1) + ABu(1) + Bu(2)$$

$$= A^{3}x(0) + A^{2}Bu(0) + ABu(1) + Bu(2)$$

$$\vdots$$

$$x(n) = A^{n}x(0) + A^{n-1}Bu(0) + \dots + ABu(n-2) + Bu(n-1)$$

$$x(n) = A^{n}x(0) + \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} \begin{bmatrix} u(n-1) \\ u(n-2) \\ \vdots \\ u(0) \end{bmatrix} \Rightarrow$$

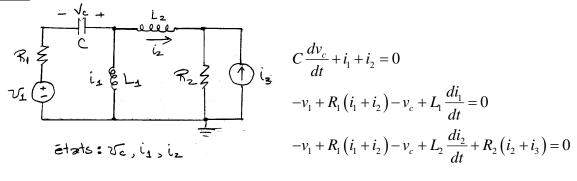
$$\begin{bmatrix} u(n-1) \\ u(n-2) \\ \vdots \\ u(0) \end{bmatrix} = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}^{-1} \left(x(n) - A^{n}x(0)\right)$$
Le système est donc gouvernable si $\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$ est de plein rang (i.e. inversible).

REPRÉSENTATION D'ÉTAT ET CIRCUITS

États on un sens physique :

- Tension aux bornes des condensateurs
- Courant dans les inductances
- Variables dont les valeurs initiales doivent être connues pour résoudre le circuit.

Exemple:



Sous forme d'état :

$$\begin{bmatrix} \frac{dv_c}{dt} \\ \frac{di_1}{dt} \\ \frac{di_2}{dt} \end{bmatrix} = \begin{bmatrix} 0 & -1/c & -1/c \\ 1/L_1 & -R_1/L_1 & -R_1/L_1 \\ 1/L_2 & -R_1/L_1 & -(R_1 + R_2)/L_2 \end{bmatrix} \begin{bmatrix} v_c \\ i_1 \\ i_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1/L_1 & 0 \\ 1/L_2 & -R_2/L_2 \end{bmatrix} \begin{bmatrix} v_1 \\ i_3 \end{bmatrix}$$

$$\frac{dx}{dt} = Ax + Bu$$

Exemple: Représentation d'état multivariable

